

Decision-Making for Systemic Water Risks: Insights From a Participatory Risk Assessment Process in Vietnam

Claudia Ringler and Paul Wyrwoll International Food Policy Research Institute and ANU Food Energy Environment Water (FE²W) Network

Australian National University

Limitations of Risk = Likelihood x Consequence

		Consequence Level				
		Insignificant	Minor	Moderate	Major	Catastrophic
Likelihood	Rare	MINIMAL	MINIMAL			
	Unlikely	MINIMAL	MINIMAL			
	Possible					
	Likely				HIGH	HIGH
	Almost certain				HIGH	HIGH

- (Almost certain x Minor) ≈ (Catastrophic x Rare)?
- What actions? How do they interact?
- Systems and feedback effects? Time?

_

Element	Description	Example from water resources	
		management	
Threshold effects	Unexpected transition or systemic shifts	Freshwater eutrophication	
Randomness in a strongly coupled system	Mean approximations provide inaccurate forecasts of system behavior; strong correlations between performance of linked systems	Unpredictable hydrological variability	
Positive feedback	Dynamic instability and amplification effect, equilibrium or stationary state cannot be maintained	Policies for water-use efficient irrigation infrastructure causing a 'rebound effect' in water consumption and reducing return flows to ecosystems	
Wrong timing (mismatch of adjustment processes)	Over-reaction, growing oscillations, or loss of synchronization	The disruption of downstream environmental flows by hydropower operations	
Strong interaction, contagion 'Difficu	Cascade effects	Droughts in hydropower-dominated energy sectors causing blackouts & impacting groundwater extraction for irrigation	

Wyrwoll et al. (2018)

The ROAD Process

Grafton et al. (2016); Wyrwoll et al. (2018)

A causal approach to risk

A causal approach to risk

ROAD Pilot Project in Đơn Dương District,

Lâm Đồng Province, Vietnam KISLA 🔚 lpard

Lâm Đồng Province

The vision of Lâm Đồng PPC:

- 1. Centre of commercial agriculture in SE Asia
- 2. Diversified agricultural products
- 3. Improve water planning and management
- 4. Green/environmentally friendly province

What policy options can address the risk of water demand exceeding water supply in the dry season?

ROAD Pilot Workshop, Đơn Dương July 2016

Insights

- Generating knowledge: farmer production groups
- Sharing knowledge: contrast between district officials' views on water pricing and not engaging with farmers on the issue
- Identification of feedback effects: the role of research
- Limitations of knowledge transfer: power asymmetries and replication of process across levels and scales

Insights

- Developing the credibility of risk assessment process: Cascade of consent
- Balancing reductionism and completeness: Facilitation and future design of ROAD (thresholds, key variables, anticipating critical transitions)